Setup MongoDB on CentOS and Getting Started Guide
MongoDB is a cross-platform document-oriented database.
Classified as a NoSQL database, MongoDB's structure in are JSON-like documents with dynamic schemas (MongoDB calls the format BSON), making the integration of data in certain types of applications easier and faster
Setup MongoDB Repository:
Repository for CentOS 6:
$ cat >> /etc/yum.repos.d/mongodb-org-3.2.repo << EOF
[mongodb-org-3.2]
name=MongoDB Repository
baseurl=https://repo.mongodb.org/yum/redhat/6/mongodb-org/3.2/x86_64/
gpgcheck=0
enabled=1
EOF
Repository for CentOS 7:
$ cat >> /etc/yum.repos.d/mongodb-org-3.2.repo << EOF
[mongodb-org-3.2]
name=MongoDB Repository
baseurl=https://repo.mongodb.org/yum/redhat/7/mongodb-org/3.2/x86_64/
gpgcheck=0
enabled=1
EOF
Install and Start MongoDB:
$ yum install mongodb-org -y
$ /etc/init.d/mongod start
$ chkconfig mongod on
Usage of MongoDB:
Log onto MongoDB:
$ mongo
>
Lets use a specific DB called sysadmins:
> use sysadmins
switched to db sysadmins
To determine which db are we using:
> db
sysadmins
Inserting Records:
This is a simple record consisting of name
and surname
> db.test.insert({name: "John", surname: "Dory"})
WriteResult({ "nInserted" : 1 })
In this example we will be adding users to our userdata collections:
db.userdata.insert({
name: 'Ruan',
surname: 'Bekker',
username: 'ruanb',
nationality: 'South Africa',
occupation: 'Sysadmin',
gender: 'male',
age: '1987/01/01',
os: 'linux'
})
db.userdata.insert({
name: 'James',
surname: 'Anderson',
username: 'jamesa',
nationality: 'New Zealand',
occupation: 'Sysadmin',
gender: 'male',
age: '1987/04/02',
os: 'linux'
})
db.userdata.insert({
name: 'Marge',
surname: 'Adam',
username: 'margea',
nationality: 'South Africa',
occupation: 'Sysadmin',
gender: 'female',
age: '1989/04/05',
os: 'mac'
})
db.userdata.insert({
name: 'Kevin',
surname: 'Dean',
username: 'kevind',
nationality: 'England',
occupation: 'Developer',
gender: 'male',
age: '1992/04/05',
os: 'linux'
})
db.userdata.insert({
name: 'David',
surname: 'Koggelberg',
username: 'davidk',
nationality: 'Australia',
occupation: 'Management',
gender: 'male',
age: '1985/04/05',
os: 'linux'
})
db.userdata.insert({
name: 'Marge',
surname: 'Adam',
username: 'margea',
nationality: 'South Africa',
occupation: 'Sysadmin',
gender: 'female',
age: '1989/04/05',
os: 'mac'
})
db.userdata.insert({
name: 'Samantha',
surname: 'Frost',
username: 'samt',
nationality: 'New Zealand',
occupation: 'Developer',
gender: 'female',
age: '1992/04/09',
os: 'windows'
})
db.userdata.insert({
name: 'Mark',
surname: 'Beck',
username: 'markb',
nationality: 'South Africa',
occupation: 'Sysadmin',
gender: 'male',
age: '1989/04/05',
os: 'mac'
})
Searching Records
Now that we have some sample data, we will do a scan to search for all records:
> db.userdata.find()
{ "_id" : ObjectId("56d0ae9cc806f4f7cfae1601"), "name" : "Ruan", "surname" : "Bekker", "username" : "ruanb", "nationality" : "South Africa", "occupation" : "Sysadmin", "gender" : "male", "age" : "1987/01/01", "os" : "linux" }
{ "_id" : ObjectId("56d0aecac806f4f7cfae1602"), "name" : "James", "surname" : "Anderson", "username" : "jamesa", "nationality" : "New Zealand", "occupation" : "Sysadmin", "gender" : "male", "age" : "1987/04/02", "os" : "linux" }
{ "_id" : ObjectId("56d0aecbc806f4f7cfae1603"), "name" : "Marge", "surname" : "Adam", "username" : "margea", "nationality" : "South Africa", "occupation" : "Sysadmin", "gender" : "female", "age" : "1989/04/05", "os" : "mac" }
{ "_id" : ObjectId("56d0aecbc806f4f7cfae1604"), "name" : "Kevin", "surname" : "Dean", "username" : "kevind", "nationality" : "England", "occupation" : "Developer", "gender" : "male", "age" : "1992/04/05", "os" : "linux" }
{ "_id" : ObjectId("56d0aecbc806f4f7cfae1605"), "name" : "David", "surname" : "Koggelberg", "username" : "davidk", "nationality" : "Australia", "occupation" : "Management", "gender" : "male", "age" : "1985/04/05", "os" : "linux" }
{ "_id" : ObjectId("56d0aecbc806f4f7cfae1606"), "name" : "Marge", "surname" : "Adam", "username" : "margea", "nationality" : "South Africa", "occupation" : "Sysadmin", "gender" : "female", "age" : "1989/04/05", "os" : "mac" }
{ "_id" : ObjectId("56d0aeccc806f4f7cfae1607"), "name" : "Samantha", "surname" : "Frost", "username" : "samt", "nationality" : "New Zealand", "occupation" : "Developer", "gender" : "female", "age" : "1992/04/09", "os" : "windows" }
{ "_id" : ObjectId("56d0b6f1c806f4f7cfae1608"), "name" : "Mark", "surname" : "Beck", "username" : "markb", "nationality" : "South Africa", "occupation" : "Sysadmin", "gender" : "male", "age" : "1989/04/05", "os" : "mac" }
Using Pretty Print:
> db.userdata.find().pretty()
...
{
"_id" : ObjectId("56d0aeccc806f4f7cfae1607"),
"name" : "Samantha",
"surname" : "Frost",
"username" : "samt",
"nationality" : "New Zealand",
"occupation" : "Developer",
"gender" : "female",
"age" : "1992/04/09",
"os" : "windows"
}
...
Selectors:
Selectors are to Mongo what where clauses are to SQL
- specify criteria that MUST match. i.e., an AND clause
- specify criteria that CAN optionally match. i.e., an OR clause
- specify criteria that MUST exist, etc.
We will use a basic selector that matches name = Ruan
:
> db.userdata.find({name: "Ruan"}).pretty()
{
"_id" : ObjectId("56d0ae9cc806f4f7cfae1601"),
"name" : "Ruan",
"surname" : "Bekker",
"username" : "ruanb",
"nationality" : "South Africa",
"occupation" : "Sysadmin",
"gender" : "male",
"age" : "1987/01/01",
"os" : "linux"
}
Find all users which uses Mac
as OS:
> db.userdata.find({os: 'mac'}).pretty()
{
"_id" : ObjectId("56d0aecbc806f4f7cfae1603"),
"name" : "Marge",
"surname" : "Adam",
"username" : "margea",
"nationality" : "South Africa",
"occupation" : "Sysadmin",
"gender" : "female",
"age" : "1989/04/05",
"os" : "mac"
}
{
"_id" : ObjectId("56d0aecbc806f4f7cfae1606"),
"name" : "Marge",
"surname" : "Adam",
"username" : "margea",
"nationality" : "South Africa",
"occupation" : "Sysadmin",
"gender" : "female",
"age" : "1989/04/05",
"os" : "mac"
}
Multiple Criteria:
All users that use linux that's from Australia
:
> db.userdata.find({os: 'linux', $or: [{nationality: 'Australia'}]}).pretty()
{
"_id" : ObjectId("56d0aecbc806f4f7cfae1605"),
"name" : "David",
"surname" : "Koggelberg",
"username" : "davidk",
"nationality" : "Australia",
"occupation" : "Management",
"gender" : "male",
"age" : "1985/04/05",
"os" : "linux"
}
And all users that uses linux thats from Australia
and England
:
> db.userdata.find({os: 'linux', $or: [{nationality: 'Australia'},{nationality: 'England'}]}).pretty()
{
"_id" : ObjectId("56d0aecbc806f4f7cfae1604"),
"name" : "Kevin",
"surname" : "Dean",
"username" : "kevind",
"nationality" : "England",
"occupation" : "Developer",
"gender" : "male",
"age" : "1992/04/05",
"os" : "linux"
}
{
"_id" : ObjectId("56d0aecbc806f4f7cfae1605"),
"name" : "David",
"surname" : "Koggelberg",
"username" : "davidk",
"nationality" : "Australia",
"occupation" : "Management",
"gender" : "male",
"age" : "1985/04/05",
"os" : "linux"
}
Sorting:
Here we will list all male users thats from South Africa
and England
, but the names are sorted by descending order
> db.userdata.find({gender: 'male', $or: [{nationality: 'South Africa'},{nationality: 'England'}]}).sort({name: -1}).pretty()
{
"_id" : ObjectId("56d0ae9cc806f4f7cfae1601"),
"name" : "Ruan",
"surname" : "Bekker",
"username" : "ruanb",
"nationality" : "South Africa",
"occupation" : "Sysadmin",
"gender" : "male",
"age" : "1987/01/01",
"os" : "linux"
}
{
"_id" : ObjectId("56d0aecbc806f4f7cfae1604"),
"name" : "Kevin",
"surname" : "Dean",
"username" : "kevind",
"nationality" : "England",
"occupation" : "Developer",
"gender" : "male",
"age" : "1992/04/05",
"so" : "linux"
}
On Ascending order:
> db.userdata.find({gender: 'male', $or: [{nationality: 'South Africa'},{nationality: 'England'}]}).sort({name: 1}).pretty()
{
"_id" : ObjectId("56d0aecbc806f4f7cfae1604"),
"name" : "Kevin",
"surname" : "Dean",
"username" : "kevind",
"nationality" : "England",
"occupation" : "Developer",
"gender" : "male",
"age" : "1992/04/05",
"os" : "linux"
}
{
"_id" : ObjectId("56d0ae9cc806f4f7cfae1601"),
"name" : "Ruan",
"surname" : "Bekker",
"username" : "ruanb",
"nationality" : "South Africa",
"occupation" : "Sysadmin",
"gender" : "male",
"age" : "1987/01/01",
"os" : "linux"
}
Sorting by nationality
in Descending order and name
in Ascending order:
> db.userdata.find({gender: 'male', $or: [{nationality: 'South Africa'},{nationality: 'England'}]}).sort({nationality: -1, name: 1}).pretty()
{
"_id" : ObjectId("56d0b6f1c806f4f7cfae1608"),
"name" : "Mark",
"surname" : "Beck",
"username" : "markb",
"nationality" : "South Africa",
"occupation" : "Sysadmin",
"gender" : "male",
"age" : "1989/04/05",
"os" : "mac"
}
{
"_id" : ObjectId("56d0ae9cc806f4f7cfae1601"),
"name" : "Ruan",
"surname" : "Bekker",
"username" : "ruanb",
"nationality" : "South Africa",
"occupation" : "Sysadmin",
"gender" : "male",
"age" : "1987/01/01",
"os" : "linux"
}
{
"_id" : ObjectId("56d0aecbc806f4f7cfae1604"),
"name" : "Kevin",
"surname" : "Dean",
"username" : "kevind",
"nationality" : "England",
"occupation" : "Developer",
"gender" : "male",
"age" : "1992/04/05",
"os" : "linux"
}
Limit Records:
Show only the first 2 records:
> db.userdata.find({nationality: 'South Africa'}).limit(2).pretty()
{
"_id" : ObjectId("56d0ae9cc806f4f7cfae1601"),
"name" : "Ruan",
"surname" : "Bekker",
"username" : "ruanb",
"nationality" : "South Africa",
"occupation" : "Sysadmin",
"gender" : "male",
"age" : "1987/01/01",
"os" : "linux"
}
{
"_id" : ObjectId("56d0aecbc806f4f7cfae1603"),
"name" : "Marge",
"surname" : "Adam",
"username" : "margea",
"nationality" : "South Africa",
"occupation" : "Sysadmin",
"gender" : "female",
"age" : "1989/04/05",
"os" : "mac"
}
To see the 3rd and 4th record, meaning skipping the first 2 records:
> db.userdata.find({nationality: 'South Africa'}).limit(2).skip(2).pretty()
{
"_id" : ObjectId("56d0aecbc806f4f7cfae1606"),
"name" : "Marge",
"surname" : "Adam",
"username" : "margea",
"nationality" : "South Africa",
"occupation" : "Sysadmin",
"gender" : "female",
"age" : "1989/04/05",
"os" : "mac"
}
{
"_id" : ObjectId("56d0b6f1c806f4f7cfae1608"),
"name" : "Mark",
"surname" : "Beck",
"username" : "markb",
"nationality" : "South Africa",
"occupation" : "Sysadmin",
"gender" : "male",
"age" : "1989/04/05",
"os" : "mac"
}
Updating Records:
Mark Beck relocated to Seattle, lets update the record:
> db.userdata.update({username: 'markb'}, {$set: {nationality: 'Seattle'}})
WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })
Deleting Records:
> db.userdata.remove({username: 'markb'})
WriteResult({ "nRemoved" : 1 })
> db.userdata.remove({name: 'Ruan'},{surname: 'Bekker'})
WriteResult({ "nRemoved" : 1 })
Resource: